Basic Food Analysis

Welcome!

Justin Mecys General Manager jmecys@hannainst.com

Michelle Salisbury Applications Manager msalisbury@hannainst.com

Trevor Morones Lead Food Safety Consultant tmorones@controlpoint.consulting

Topics

- Basic food analysis
- Quality
- Pathogen control & food safety regulations
- HACCP Principle no. 6 validation
- Good laboratory practices
- Instruments
- Temperature
- Question and Answer

What sector of the food industry are you in?

Basic Food Analysis

"the growth and infrastructure of the modern global food distribution system heavily relies on food analysis (beyond simple characterization) as a tool for new product development, quality control, regulatory enforcement, and problem-solving."

 R. J. Mcgorrin, "One hundred years of progress in food analysis," Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8076–8088, 2009.

Testing

- Compliance
- Labeling
- Quality/Consistency
- Nutrition
- Safety
- Validation

Composition

 of food largely determines safety, nutrition, physicochemical properties, quality attributes, and sensory characteristic

The new household discoveries; an encyclopedia of recipes and processes (1917)

Determine Composition

- Determine the property of interest to determine the analytical procedure
- Specific atoms
- Specific molecules
- Types of molecules
- Specific substances

Food Safety

- There are 76 million cases of foodborne illness in the US
 - 325,000 hospitalizations and 5,000 deaths in 2010
 - Higher mortality among individuals with compromised immune systems
- Food safety regulations work to control FAT TOM

Microbial Spoilage

www.health.com

- Food products are constantly subjected to risk of spoilage
- Microorganisms favor food products due to their high moisture and nutrient content
 - Even food that is free from microbes can be readily spoiled if the conditions are right

Controlling Microbial Growth

Intrinsic: Relates to properties of the food

- Water activity/moisture content
- pH/Acidity
- Redox potential (ORP)
- Antimicrobials (Added or naturally occurring)

<u>Extrinsic: Environmental</u> <u>controls</u>

- Temperature
- Humidity
- Microbial environment

th.aectourismthai.com

FAT TOM

- (**F**): Food
- (A): Acidity
- (**T**): Time
- (T): Temperature
- (**O**): Oxygen
- (M): Moisture

Top pathogens contributing to domestically acquired foodborne illnesses and deaths, 2000–2008

http://www.cdc.gov/foodborneburden/resources.html

Factors Affecting the Growth and Control of Pathogenic Bacteria

Name	Temperature in ° C			Min pH	Min Aw	O2 needs
	Minimum	Optimum	Maximum			
Salmonella	7	35 - 37	45	3.8	0.94	FA*
Clostridium botulinum	3	18 - 25	45	5.0	0.96	OA*
Clostridium prefringens	12	44 - 49	50	5.5	0.93	OA*
Staphylococcus aureus	6	37	48	4.2	0.85	FA*
Campylobacter jejuni	30	42	45	4.9	0.98	MA*
Listeria monocytogenes	-1.5	37	45	4.4	0.92	FA*
Escherichia coli 0157:H7	7	37	46	4.4	0.95	FA*
Shigella	7	35 - 37	47	4.0	0.91	FA*
Bacillus cereus	4	30 - 37	50	4.3	0.91	FA*

Clostridium perfringens is less strictly anaerobic than Clostridium botulinum and can tolerate some exposure to oxygen.

Clostridium botulinum is pathogen associated with deadly "food poisoning".

Significant growth of **Staphylococcus aureus** occurs at 15.6° C (60° C) and higher and after fermentation the sausages should be dried below this temperature. Fermentation tables are based on this fact.

FA*: Facultative anaerobic feels comfortable in oxygen but can live without it as well

OA*: Obligate anaerobic cannot grow in presence of oxygen

MA*: Microaerophile bacteria like very little of oxygen (5%) and low levels of CO2 (carbon dioxide-10%)

As seen in the table Staphylococcus aureus is quite resistant to drying

nttp://www.meatsandsausages.com/sausage-types/termented-sausage/satety-nurdies

Code of Federal Regulations

Food and Drug Administration (FDA)

• Responsible for CFR 21

US Department of Agriculture (USDA)

• Responsible for CFR 9

Shelf Life Studies

Accelerated Vs. Real Time

6th HACCP Principle

Validation

Validation

•process of demonstrating that the HACCP system, as designed, can adequately control identified hazards to produce a safe, unadulterated product.

- HACCP system - HACCP plan in operation, including the HACCP plan itself.

- HACCP plan - includes the hazard analysis, any supporting documentation including prerequisite programs supporting decisions in the hazard analysis, and all HACCP records.

Food Testing

- Food Safety
- Food Labeling
- Food Quality and Consistency

Food Quality and Consistency

www.mestec.net

- Self guided initiatives
- Consistency between
 batches, over time
- Ensure food meets specified flavor/ texture profile

Temperature

Growth of Bacteria over 5 Hours at 47*C/ 98.6* F (initial population 100)

Primary Thermometer Types

Thermocouple

 Measures the potential difference at the opposite extremes of two different metal wires

Thermistor

• Measures temperature by applying a potential difference and measuring the resistance

Pt100

• Measures a change in electrical resistance

Infrared

Measures the heat given off

Thermometers

Infrared HI99556 HI99551

Thermocouple HI935007N

Thermistor HI9241 HI93501NS

ANNAH

Checktemp

Thermistor Checktemp[™] Family

Thermocouple K-Type Probe Varieties

HI766PA Roller Surface Probe

HI766B1 90° Surface Probe

HI766PD Air and Gas Probe

HI766TV1 Pipe Clamp Probe

Temperature Measurement

	Range	Accuracy	Response
Thermistor	Limited (-50°C-220°C)	High (±0.3°C)	Medium
Thermocouple	Wide (-200°C-1371°C)	Medium (±0.5°C)	Fast
Pt100	Limited (200°C-850°C)	High (±0.2°C)	Fast
Infrared	Limited (-20°C-300°C)	Medium (±2% of Reading)	Very Fast

 $pH = -Log_{10}[H^+]$

Based on water

• $H_2O \rightleftharpoons H^+ + OH^-$

The pH Scale

Classification of Acidity in Foods

- The FDA 21 CFR defines guidelines for acidity of foods for their preservation:
 - Acid foods: Natural pH ≤4.6
 - Low-acid foods: Have a pH >4.6 and water activity
 >0.85 (exclusion for alcoholic beverages)
 - Acidified foods: Any low-acid foods that have had acid or acid food added such that pH ≤4.6.

Methods to Measure pH

- Chemical methods
 - Litmus Paper
 - Test Kit
 - Photometer
- Potentiometric
 - Meter with Electrode

Classification of Acidity in Foods

ACID LEVELS (pH)				
Food	pН	Classification		
Most fruits	Equal or less than 4.6	NATURALLY ACID		
Most peaches				
Most apples				
Most tomatoes				
Most orange juices				
Fresh fish	Greater than 4.6	LOW-ACID		
Canned green beans				
Bread				
Fresh ham				
Most protein foods				
Most vegetables and				
starch-based foods				
Pickled foods	Equal or less than 4.6	ACIDIFIED		
Source: Food Microbiological Control Manual, Federal and Drug Administration, 1998.				

If the finished pH of the food is \leq 4.00 any method can be used. If the finished pH of the food is >4.00, the final pH reading must be determined using potentiometric methods.

Are you measuring pH in house?

Bulb Shapes

A **spherical tip** is recommended for general use in aqueous or liquid solutions and provides a wide area of contact with the solution.

A **conical tip** is recommended for semi-solid products like emulsions, cheese, meat and food, in general.

A **flat** tip is recommended for direct surface measurement on skin, leather paper, etc...

Electrode Body Types

Hanna pH Glass Types

Identification	Range	
Standard	pH = 0 – 13 0°C – 70°C	
High Temperature	pH = 0 – 14 20°C – 100°C	
Low Temperature	pH = 0 – 12 -10°C – 50°C	
HF Glass	pH = 2 – 10 -5°C – 30°C	

Types of Junctions

Hanna Foodcare pH Electrodes

FC210: Creams, Yogurt, Sauces

FC220: Sauces, Fruit Juice FC230: Meat

HI1048: Wine Must, Juice, Viscous Samples

FC202: Dairy Products, Semi-Solid Foods

FC240B: Cheese, Soft Solids

Hanna Foodcare pH Electrodes

Electrode and Meter Configurations

BNC: standard electrode connection, require separate temperature probe

DIN: proprietary electrode connection, built in temperature sensor

Bluetooth: proprietary wireless electrode connection, built in temperature sensor

Benchtop (HI5221/2)

Hybrid (edge®, HALO®)

Portable (HI99163, HI98190)

Why Calibrate?

pH electrodes differ from ideal behavior due to:

- Electrode condition and cleaning
- Electrode aging
- Manufacturing process

Why Calibrate?

Calibration tries to **compensate** for all the above effects without knowing which effect is causing the deviation from ideal behavior.

Measuring pH in Foods

- Calibration: bracket expected pH range
 - Always calibrate at pH 7.0 and at least one other point
 - Calibration points should be > 1 pH unit apart

CAL Check™

- Hanna-exclusive feature found in bench-tops and portables.
- Provides indicators to potential problems during the calibration process.

Store Electrode Properly

HI700300L: pH/ORP Electrode Storage Solution

If storage solution is not available electrode can be stored in pH 4.01 or pH 7.01 buffer.

Do not store electrodes in alkaline solutions long term.

NEVER store electrodes in deionized water.

Clean Periodically

HI8061L: General Purpose Cleaning Solution in FDA bottle HI 7073: Cleaning Solution for Proteins HI 70641L: Cleaning and Disinfection Solution for Dairy Products HI70604L Cleaning Solution for Milk Deposits HI70635L Cleaning Solution for Wine Deposits HI8077L: Cleaning Solution for Oil and Fats in FDA bottle HI70631L Grease and Fats Alkaline Cleaning Solution

HI70630L Grease and Fats Acid Cleaning Solution

Acidity and pH

- Acidity is the amount of acid in a sample, or the amount of base required to neutralize a sample (titration).
- pH is the strength of an acid, or the negative log of the activity of the hydrogen ion
- In foods, both the strength and quantity of the acid in solution is important, so both parameters are commonly monitored

What is titration?

Analyte	 Substance being analyzed, unknown concentration 	
Titrant	 Substance being added to analyte, known concentration 	
Equivalence Point	 Point during titration at which the analyte and titrant are present in equal parts; theoretical end of titration 	
Endpoint	 Actual point at which the titration is terminated, determined by physical or sensing indicator 	

Acidity Determination

- All acidity titrations require a base as a titrant
 NaOH most common
- Titrations are carried out to neutralization and are indicated by a fixed pH endpoint or an equivalence point
- Titration determines the amount of titratable acidity, but does not differentiate acids

Acidity Titration

- Manual titration to color indicator
- Manual titration to fixed endpoint
- Manual titration to fixed endpoint or equivalence point

Do you perform titrations in house?

Manual vs Automatic Titration

Sugar

- Refractometry
- Nonspecific
 - Measure total refraction
 - Reports results in units of choice
 - Quantitative in binary solutions
 - Qualitative in complex solutions

Refractometry

Three glasses with a straw in each	Air			
	Water			
	Sugar V	Water		
	AIR	WATER	SUGAR	

Refractometry

- A Total Refraction
- B Transition Point
- C Total Reflection

HI 968XX Measurement

	HAMMA				
	20		6	1	
	₀25.0°		4		
HI 96814 Wine Refr	actometer 7 %Brite 2 'Oechsle ("Oa) 3 'KMW ("Babo)	ON		1	
READ	ZERO RANGE AN UNINE	X	_	1	
-			2, 4,	5, 7	7
		\setminus			
6		1			
U	১				

- 1. Turn on
- 2. Add deionized or distilled water to sample stage
- 3. ZERO instrument
- 4. Wipe off prism
- 5. Add sample
- 6. Take reading
- 7. Wipe off prism for next sample

Hanna Refractometers

Model	Parameter	Range	Resolution	Accuracy
HI 96801	Sucrose (% Brix)	0 – 85 % Brix	0.1	+/- 0.2
HI 96802	Fructose	0 – 85 % mass	0.1	+/- 0.2
HI 96803	Glucose	0 – 85 % mass	0.1	+/- 0.2
HI 96804	Invert Sugar	0 – 85 % mass	0.1	+/- 0.2
HI 96821	Food Salinity	0 –28 g/100 g 0 – 34 g/100 mL 1.000 – 1.216 SG 0 – 26 °Baume	0.1 0.1 0.001 0.1	+/- 0.2 +/- 0.2 +/- 0.002 +/- 0.2
HI96800	Refractive Index	1.3300-1.50580 nD 1.3330-1.5040nD ₂₀	0.0001nD 0.0001nD ₂₀	+/- 0.0005nD +/- 0.0005nD ₂₀
	Brix	0.0-85.0% Brix	0.1% Brix	+/- 0.2% Brix

REMEMBER! Refractometers cannot differentiate between sugars, sugar/salt, etc. Meters differ by internal algorithms only (calculation, ATC compensation)

Salt

- With regards to food, "sodium" and "salt" are not necessarily synonymous.
- Although most of the sodium in the food we eat is derived from NaCl, there are other potential sources of sodium including:
 - Baking soda
 - Other preservatives
 - Monosodium Glutamate

Salt in Food Sample Preparation

- Most methods of analysis require liquid samples
- Solid foods required additional sample preparation

Source: Medical Expo

- **Slurries:** Salt is extracted from finely ground sample into water
- Digestions: Chemical treatment to facilitate extraction of salts

- In methods of analysis, there are often multiple methods to measure the same parameter
- Method selection depends on:
 - Accuracy requirements
 - Sample matrix/sample prep
 - Ease of use
 - Type of industry and budgetary concerns
 - Prevalence of interferences

Salt in Food

Method Selection

- Simple Methods
 - Ideal for binary solutions or qualitative analysis
 - Conductivity
 - Refractometry
- Analytical Methods
 - Standard method compliance
 - Specific ion analysis
 - Titration
 - Ion Selective Electrode

www.today.caricom.org

Titrimetric Analysis

- Direct measurement of chloride; NaCl inferred
 - $\operatorname{AgNO}_{3 (aq)} + \operatorname{Cl}_{(aq)} -> \operatorname{AgCl}_{(s)} + \operatorname{NO}_{3}^{-}_{(aq)}$
- Most common method of analysis in standard methods
 - AOAC, IDF, ISO
- Can be performed manually to color indicator, or automatically to equivalence point

Titrimetric Analysis

 Direct measurement of chloride; NaCl inferred

$$- \operatorname{AgNO}_{3 (aq)} + \operatorname{Cl}_{(aq)} -> \operatorname{AgCl}_{(s)} + \operatorname{NO}_{3}^{-}_{(aq)}$$

- Most common method of analysis in standard methods
 - AOAC, IDF, ISO
- Can be performed manually to color indicator, or automatically to equivalence point

Salt in Food

Method Selection

Method	Method Refractometry		Potentiometric
Apparatus	Manual or Digital/	Manual burette	Potentiometric titrator, chloride or silver-sulfide ISE
Principle	Sodium content is inferred from refraction	AgNO₃ reacts with Cl⁻salts, color indicator detects EP	AgNO₃ reacts with Cl ⁻ salts, endpoint occurs when Cl ⁻ is no longer in solution
Cost*	\$200	\$300	\$3000->\$6000
Advantages	Simple, rapid	Inexpensive	Reference method, most accurate, automated
Disadvantages	Subject to interferences (salts, sugar, fats, acids)	Subjective, less accurate than titration	Capital Investment
Applications	Brines, semi-quantitative analyses	Finished product, brines	Finished product, brines

Moisture in Food

- Water is used in several stages of food production
 - Processing and preparation
 - Disinfection of equipment, etc.
- Water is a significant
 component of many foods
 - Added directly as an ingredient
 - Present as part of raw materials

Source: MEET-BIS.org

Free Water vs. Bound Water

- Water may be free and/or bound
 - Based on the chemical makeup of the food product
- The analytical method used to determine water is based on:
 - Sample composition
 - Customer preferred result

Source: latenitelabs.com

Analytical Methods Loss on Drying

- Theory: measure the mass of a sample before and after drying
- Common method of analysis
- Can be performed via manual or automated analysis

Analytical Methods Water Activity

- Water can be bound with salt, sugar, pectin, etc...
- A lower water activity means less water available for microorganisms

Analytical Methods

Water Activity

Range	Microorganisms	Examples
0.20-0.30	No growth	Milk powder, dried vegetables
0.30-0.40	No growth	Crackers, cookies, cereal, pet food
0.40-0.50	No growth	Flour, gum, dry beans
0.50-0.60	No growth	Pasta, spices, rice, wheat
0.60-0.65	Yeast, mold	Dried fruits, caramels, honey
0.65-0.75	Yeast, mold	Sugar cane, molasses, nuts
0.75-0.80	Halophilic bacteria	Marmalade, marzipan, beef jerky
0.80-0.87	Yeast, mold	Fruit concentrates, jams, jellies
0.87-0.91	Yeast, bacteria	Salami, dry cheeses, margarine
0.91-0.95	Salmonella, botulinum, yeast, molds	Cured meat, some cheeses, bread
0.95-1.00	E. Coli, pseudomonas, shigella, yeast	Canned fruits, vegetables, milk, fish

Analytical Methods Karl Fischer Titration

- Titration to determine free and/or bound water
 - Titrant: iodine
 - Analyte: water
- HI903 Volumetric Karl Fisher Titrator
 - Higher concentrations of water
- HI904 Coulometric Karl Fischer Titrator
 - Lower concentrations of water

Determination of Moisture Comparison of Methods

	Loss on Drying	Water Activity	Karl Fischer
Measures	All volatiles	Free water	Total moisture
Time for analysis	Several hours	Several minutes	Several minutes
Advantages	-Inexpensive	-Fast -Small instrument	-Reports water content
Disadvantages	-Time consuming -Measures volatiles -Requires several instruments	-Only measures free water	-Needs solvents -Large instrument

Conclusions

Bringing testing in house

- Faster turn around time on testing results
- Less \$\$\$ per test
- Test more frequently
- Improve compliance
- Increase food quality and consistency

Questions & Answer Session

© Hanna Instruments

Thank you!

10% off at Hannainst.com Use coupon code HACCP

Expires May 15, 2016

HANNA instruments

Hanna Instruments USA 584 Park East Dr, Woonsocket, RI 02985 1-877-694-2662

Thank you!

10% off at controlpoint.consulting Mention code FOODWEB1

Expires May 15, 2016

Control Point LLC 1880 Hollywell St Las Vegas, NV 89135 www.controlpoint.consulting

CONTROL POINT